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A CRITERION FOR THE EQUIVALENCE OF FORMAL SINGULARITIES

By KONRAD MOHRING and DUCO VAN STRATEN

Abstract. We prove a generalization of the finite determinacy theorem for isolated singularities.
The maximal ideal occuring in the finite determinacy theorem is replaced by any ideal annihilating
the first cotangent cohomology of a formal singularity over a Noetherian ring. An analogous result
holds for finitely generated modules. As an application we give a criterion for the algebraizability
of formal singularities and modules.

0. Introduction. In this paper we give a criterion for certain algebras over
a noetherian ring S to be isomorphic, Theorem 1.1. Informally speaking, the
criterion is the following stability assertion. Let the first cotangent cohomology
T 1(R/S) of R = S[[xy,...,x,]]1/I be annihilated by some power of an ideal a.
Then any S[[xi,...,x,]]1/J, such that generators of J and relations among the
generators are congruent to generators and relations of I modulo a sufficiently
high power of a, is right equivalent to R. If R is an isolated singularity over
the field k, T'(R/k) is always annihilated by some power of the maximal ideal
(x1, - . - »Xn), because the support of T'(R/k) is contained in the singular locus; so
this generalizes known results on isolated singularities.

For a list of references on the subject, we refer to the introduction of [CS93].
Our proof is similar to Hironaka’s proof of a criterion for the equivalence of
isolated singularities sketched in [Hir69].

Just as for isolated singularities in Artin’s paper [Art69, Th. 3.8], we deduce
from our criterion the algebraizibility of a certain class of singularities, Theo-
rem 1.3. This class includes the isolated singularities, generalizing Artin’s result.
Theorem 1.5 is the analogue of our main theorem for finitely generated modules
over a field.

We will use the notation P = S[[xy,...,x,]] throughout. We recall that the
first cotangent cohomology T'(R/S) of an S-algebra R = P/I is the cokernel of
the natural map Derg(P, P) — Homp(l,R).

1. Results. Our main theorem is this:

THEOREM 1.1. (Equivalence of singularities) Let S be a noetherian commuta-
tive ring with 1, P = S[[x1, ..., x,]] and a C P an ideal such that 1 — x is invertible
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1320 K. MOHRING AND D. VAN STRATEN

for all x € a and P is a-complete, i.e., (P, a) is a complete Zariski ring. Let I C P
be a proper ideal and write R := P/I. Assume that a°T'(R/S) = 0 for some a € N.
For an exact sequence of P-modules

répfp R0,

there exist constants ar, ac and b, such that the following holds: If c € Ny, F' and
G’ are matrices whose entries are congruent to those of F and G modulo a®*¢ and
a%G respectively, and if F' o G’ = 0, then there is an automorphism ® of P over S
which is congruent to the identity modulo a®**~? and carries the ideal I' := Im(F")
onto I = Im(F).

In particular, the theorem is valid if we choose a to be the following ideal
H;, which can easily be computed from the given data.

Definition 1.2. Let Jac(F) denote the jacobian matrix of partial derivatives
of F. If A, B, C, D are subsets of indices, let Gag and Jac(F)cp denote the corre-
sponding submatrices.

We define the ideal H; C P to be generated by

{det(Gyp) - det(Jac(F)cp) | #A =#B =p, #C=#D=s—p
and AUD={1,...,s}}.

The ideal H; or rather H; + I describes the nonsmooth locus of R over S.
Since the cotangent cohomology has support in the nonsmooth locus, a power of
Hj annihilates T!. Following Artin, [Art76, Part II], we outline a direct proof:
Consider the complex

G®R Jac(F)®R
(1) R R R,

Localizing at a prime p D I gives a split sequence iff H; C p. In this case the dual
complex of (1) is also a split sequence. In particular it is exact. Now Tl(R/S)
is the homology of this dual complex, so T'(R/S) is annihilated by some power
of H I.

The special case of Theorem 1.1 for an ideal defining the nonsmooth locus
has already appeared, slightly modified, in [CS97, Th. 4.4]. However, our theorem
is stronger, since the support of T! can be smaller than the nonsmooth locus, e.g.
for rigid singularities. '

Now we consider the special case that S is a field and a = m = (x1, ..., X,).
Following Artins proof for isolated singularities [Art69, Th. 3.8], we deduce the
algebraizability of singularities with dim; T'(R/k) < oco.

THEOREM 1.3. Let k be any field. Let I C m C P = k[[x), .. .,x,]] be an ideal,
R := P/I and dim; T'(R/k) < co. Let H = k{x1, . . . , xn) be the Henselization of the
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A CRITERION FOR THE EQUIVALENCE OF FORMAL SINGULARITIES 1321

polynomial ring at the maximal ideal (x, . . . ,x,), i.e., the ring of algebraic power
series.

Then there is an ideal J C H and a formal automorphism ® of P, which
transforms the completion of J into I:

o) =1.

Proof. The condition dim; T'(R/k) < oo is equivalent to m*T!(R/k) = 0 for
some constant a. We choose a representation

PrSpEp RS0

of R. So if F = (f;) and G = (g;), we have generators fi, ..., f; of I and relations
> .figij = 0. The f; and g;; are solutions of the following system of equations in
the unknowns Y;, ¥;;:

5
Y vY;=0, j=1,....r
i=1

Now we make use of the Artin approximation theorem as stated in [KPR7S,
Satz 5.2.1, 4)]:

THEOREM 1.4. (Artin Approximation Theorem) Let H = k(xi,...,x,) be the
Henselization of the polynomial ring at the maximal ideal (x1, . . ., x,). We assume
J(x) € PN to be a solution of a system of polynomial equations in N variables over
H. Let k be any number. Then there is an algebraic solution y(x) € HVY c PV,
approximating the given solution up to order k:

y(x) —y(x) =0 mod mk.

Choosing k to be bigger than the constants ar and ag in the theorem, we are
done. O

By essentially the same proof as for Theorem 1.1 we obtain the following
statement for finitely generated modules.

THEOREM 1.5. Let M be a finitely generated module over P = k[[xy,. .., x,]]
with a®Ext'(M, M) = 0. Fix a representation

rSprLip sm—o
of M, where G and F are matrices with entries in P. Then there are constants ar,

ag and b such that the following holds: If F' and G' are matrices whose entries are
congruent to those of F and G modulo a®F+ and a%G respectively, ¢ € Ny and if
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1322 K. MOHRING AND D. VAN STRATEN

F' o G' =0, then there is an automorphism of P* which carries Im(F") onto Im(F).
The automorphism is congruent to the identity modulo a®F*<~b.

COROLLARY 1.6. A finitely generated module over P = k[[x1, . .., x,]] with the
property dimy Ext'(M, M) < oo is algebraic, i.e., the completion of a module over

the ring of algebraic power series H = k(xy, ..., xp).

2. Proof of Theorem 1.1. We denote the entries of the matrices F and G
by f; and g;; respectively. The exact sequence

PrSpELi_o

gives us an embedding of the normal module N = Homp(l, R) into R*:

0 — Homp(,R) = Homp,R) = RS,
n — F*(n) = (n(f1),...,n(f)).

The entries of F/ and G’ are
(2 fi = fi+di @i € aF,
€©) g = 8j+v» € a,

with ar,ac > 0. We will give explicit lower bounds for ar and ag later on in
the proof. We have assumed that

0=> fig;
= figi+ > g+ > frvg+ D divi

The first summand is zero, the third is in the ideal / = (f, . . .,fs) and the fourth is
an element of a®r*?G. So 7i( f;) := (f{ —f;) = ¢: defines a P-module homomorphism
fi: 1 — P/(I + a%F*%G) with the property

A(f)) = ¢+ (I + a®F*0),

We would like to find an element » in the normal module N of R, i.e., a homo-
morphism from [ to R = P/I, that induces 7.

PROPOSITION 2.1. Let P be any Noetherian ring, a C P anideal,and \: A — B
any homomorphism between finitely generated P-modules. Then there exists an
integer ¢ = c(\) with the following property: For all x € A and p € N such that

Ax) =0 modda’*B
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A CRITERION FOR THE EQUIVALENCE OF FORMAL SINGULARITIES 1323
there exists an X € A such that

AX) =0

and ¥ = x moddPA.

Proof. Consider the submodule Im(\) C B. By the Artin-Rees lemma (cf.
[Eis95]), there exists an integer ¢ such that

Im(\) N a?*“B = o’ (Im(\) N a°B).

So if M(x) € a”*“B we must have A\(x) = Y, rn; with r; € o and n; = A(m;) €
Im()). Then X = x — ), rym; is just what we want. =i

Now we apply this proposition to the P-modules A = Homp(P*,P) and B =
Homp(P", R) and the homomorphism

A A — B,
¢ — ¢oG modl.

Let’s call the integer c(\) of the proposition c;. Then we end up with ¢; such
that

4 $i=¢; moda®FHicT
with the property that

Zg{&}gij =0 modl.
Hence these <;3i describe an n € N = Hom(/, R) defined by
Q) n(f) = i +1.

Let’s assume we have chosen ag > c¢1. As ¢; = ¢; mod a®*%G-<1 by (4),
this implies ¢; = ¢; mod aF and since ¢; € a%F by (2) this leads to

(6) i € aF.
We have embedded the normal module N into R® by assigning to a homomorphism
in N the s values on f, ..., f;. So our n from (5) is mapped into a’FR°. Applying

Proposition 2.1 to the embedding N — R°, we obtain an integer ¢, depending
only on the embedding, such that

n € a% "N,
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1324 K. MOHRING AND D. VAN STRATEN

Next, we want to find a derivation § € Derg(P,P), whose restriction to
I induces n. The cokernel of the map from Ders(P,P) to N is by definition
T'(R/S). We have assumed a®T'(R/S) = 0, so a’N is contained in the image of
Derg(P, P) under this map. So n is induced by some
Q) 6 € a®F~*"2Derg(P, P).
This means we have the equalities

n(f)=0(f)+1

and by (4) and (5) this implies
®) 0(f)=¢; modlI + a®F*i6—¢1,
But as by (7) 8 € a*F~*"“2Ders(P, P) and by (2) ¢ € a%F, we also know
) 0(f)=¢; moda® 72
Applying the Artin-Rees lemma once more we find an integer c3 such that
(10) a* 3 NI=d@3? NI C dl
We have chosen ag > c¢1. So ap —a — ¢3 < ar + ag — ¢} and (10) implies

a%F~a=2 N ([ + a9F*G—C1) C q¥F ~947 23] 4 q?F*G—¢1, Combining this with (8)
and (9) we get:

(1 1) 0(f,) = ¢i mod aaF‘a‘CZ—CSI + aap+ag-cl ]
We use the derivation 6 to construct an automorphism ®,, of P = S[[xy,. .., x,]]
by setting

<I)ap(xm) = X — 000m).
From (7) we deduce the two obvious inclusions

(12) e(ak) C aap—a—02+k—1
(13) and  @,.(f) = f—0(f) moda* 4"  VYfeP.

‘We first notice that

(14) @, =1dp moda’ 72,
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A CRITERION FOR THE EQUIVALENCE OF FORMAL SINGULARITIES 1325

Further

O (fi+6) = Dap(f) + Pup(4)
= fi+(di —0(f)) —0(¢;)  moda®@F=a=
= fi — 0(é) mod (a?F 47273 4 gIFtaGTCr)

= f; mod a??F ~4—¢2~ 1,

The first congruence follows from (13), the second from (11) and the third from
(12). If we choose ag > c¢;+1 and ap > max{2a+2c2+1,a+c2+2,ag+a+cr+c3},
we get

@, (fi + ¢) = f; mod a%G[ + !
S O, (fi+ ) = fi+hi+¢!  with ¢ € a6, ¢! € a®F*1,
Consider the vector (f; + ;). It can be written as (fi,...,f;s) o (1 + ¥4;),
where W, is a matrix with entries in a?G. Since P is a-complete, 1 + ¥, is

invertible and describes an automorphism of P°. Set F:=Fo(l+ Y,.) and
G :=(1+W¥,)"! o G. We get a new representation of R:

,\
!

P ps P R 0

We set G’ =G’ and F' = @, o F":

s .
pr&= ps F_p

P

Then F” o G” = 0. We have shown that the entries of F' are congruent to those
of F” modulo a%*!, The entries of G are congruent to those of G modulo a%,
which in turn are congruent to those of G” = G’ modulo a“G, so the entries of G
are congruent to those of G” modulo a%.

So we have improved the situation by raising ar by one. Now we want to
use induction on ar; to do this we have to check wether all those constants may
be taken to be the same in the next step of our induction:

The constants a and c3 only depend on a and 1.

The constant ¢; was found by applying Proposition 2.1 to the homomorphism

A: Homp(P°,P) —  Homp(P',R)
) — ¢oG modl.
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1326 K. MOHRING AND D. VAN STRATEN
In the next step of our induction we will apply it to
N: g po(ld+¥,) ' oG modl.

That is to say: Instead of at A we will be looking at the composition of A with the
automorphism ((Id+‘PaF)‘1)* of Homp(P*, P). Since the integer c; only depends
on the image of ), it will be the same as before.

The last constant we have to consider is c;. It was found by applying the
Artin-Rees lemma to the submodule F*(Hom(I,R)) C Homp(P°,R) = R®. In the
next step we will be considering the submodule (1 + ¥,.)*(F*(Hom(l, R))) in
Homp(P*,R). But (1+¥,;)* is a P-module automorphism of Homp(P°, R), so we
can apply the following easy lemma:

LEMMA 2.2. Let P be a ring, a C P an ideal, A C M two P-modules and
p € Autp(M). If

(15) ANa’*M = d’(ANa‘M)
for some integers p,c € N, then
(16) P(A) N aP*M = aP (p(A) N aM).

In particular, if P is noetherian and M finitely generated, the Artin-Rees lemma
gives rise to the same constants when applied to the two submodules A and p(A)
of M.

Proof. 1t is trivial to see that for any two submodules By, B, of M we have

@(B1 N By) = ¢(B1) N @(By) and also p(a”’B;) = a’p(By). So the left resp. right
side of (15) gets mapped to the left resp. right side of (16). m]

Now let’s do the induction. ®,, = Idmoda’ ~%~“2, so we have a limit
D =---0®@,41 0Dy, which is an automorphism of P. In the same way we get a
matrix ¥ with entries in some power of a such that (1 +¥) =[] (1 + W4.41). By
construction, ®( f; + ¢;) is the ith component of (fi,...,f;) o (1 +¥F), so {f; + ¢i}
is being mapped to the generating system {f; o (1 + ¥)} of I, hence ®(I")=1. O

3. Proof of Theorem 1.5. The proof is the same as for Theorem 1.1. We
will only check that the condition a?Ext'(M, M) = 0 for modules is the analogue
to the condition a®T! = 0 we had before. We fix a presentation

rSpip mMm—o

of M and consider a perturbation

P P » P!
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A CRITERION FOR THE EQUIVALENCE OF FORMAL SINGULARITIES 1327

which is an exact sequence. Then the (¢ x s)-matrix ® defines a homomorphism
Im(F) = P°/(Im(G) 2P /Im(F))/a”. We approximate this homomorphism by
a homomorphism to P'/Im(F). Now the crucial point is to extend this homomor-
phism from Im(F) to all of P*. We begin with the exact sequence

0—-Im(F)—- P - M—DO.
This gives us a long exact sequence which starts like this:
0 — Hom(M,M) — Hom(P', M) — Hom(Im(F),M) — Ext'(M,M) — - - -.

So if a®Ext!(M, M) = 0, all homomorphisms in a* Hom(Im(F), M) can be extended
to P'. Finally we lift this extension from Hom(P',M) to an automorphism ¥ €
Hom(P', P"). The automorphism Idp: +¥ is the analogue to the automorphism we
have constructed above. The rest of the proof is exactly as for Theorem 1.1. It
consists mainly of keeping track of the powers of a up to which things vanish.
We leave the details to the reader.

JOHANNES-GUTENBERG UNIVERSIT, AT, FB17 — MATHEMATIK, 55099 MAINZ, GERMANY
E-mail: konrad@mathematik.uni-mainz.de
E-mail: straten@mathematik.uni-mainz.de
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